¸¸µç ¼ø¼º°[2016]
[óÀ½] [2018] [2017] [2016] [2015] [2014]
¹ÎÀº±â¼±»ý´ÔÀÇ ¼öÇÐÀÚ·á½Ç ÀÌ¿ë¹æ¹ý : https://goo.gl/bVaSff
¹Ýµå½Ã Ardobe reader ¸¦ ¼³Ä¡ ÈÄ¿¡ ÀڷḦ ÀÌ¿ë¹Ù¶ø´Ï´Ù.
ÀÚ·á´Â Geogebra¿Í TexÀÇ beamer¸¦ ÀÌ¿ëÇÏ¿© ¸¸µç °ÍÀÔ´Ï´Ù.
¼ö¾÷¿¡ »ç¿ëÇϱ⠽±°Ô pdfÈÀÏ·Î ÀçÆíÁýÇÑ ÀÚ·áÀÔ´Ï´Ù.
¶ÇÇÑ, °ÀǸ¦ ¿Ã·Á³õ¾Ò½À´Ï´Ù.
20161118 : ¹Ý¿ø¿¡ ³»Á¢ÇÏ´Â ¿ø ÀÛµµÇϱâ(Draw The Circle Touch inside The Semicircle) : https://goo.gl/bHdilx YouTube : https://youtu.be/pxM9TRDvltc GeogebraTube : https://ggbm.at/TMQqxe63
20161114 : ±ØÁÂÇ¥¿¡¼ÀÇ °î¼±ÀÇ ±æÀÌ(The Arc Length in The Polar Coordinates) : https://goo.gl/lAZlKF
20161111 : Á÷±³ÁÂÇ¥¿¡¼ÀÇ °î¼±ÀÇ ±æÀÌ(The Arc Length in The Cartesian Plane) : https://goo.gl/b3EbmS
20161011 : »ç´Ù¸®²Ã ¹æ¹ý¿¡¼ÀÇ ¿ÀÂ÷(Error in the Trapezoidal Rule) : https://goo.gl/xxqP4b
20160901 : ÇÔ¼ö°¡ Áõ°¡ ¶Ç´Â °¨¼Ò°¡ ¾Æ´Ï´Ù.(A function isn't increasing or decresing.) : http://goo.gl/mbUIzT
20160810 : ±¸ÀÇ ¹ßÆÇ°î¸é(Pedal curve of sphere) : http://me2.do/5j339ODE
20160810 : ¼Ò¼öÄ«µå¿Í ÇÕ¼º¼ö Ä«µå¸¦ È°¿ëÇÑ °ÔÀÓ :http://me2.do/xuoo98QL
20160716 : ±Ø°ªÁ¤¸®(The Extreme Value Theorem) : http://me2.do/GE2p3z4H
20160715 : ÃÖ´ñ°ª°ú ÃÖ¼Ú°ª(Maximum and Minimum Values) : http://me2.do/xt1c7qD7
20160714 : ¿À¸ñ °Ë»ç(Concavity Test) : http://me2.do/5oFSwRYk
20160608 : »ç¸éüÀÇ ½ºÆ®¸µ ¾ÆÆ®(Tetrahedron String Art) : http://me2.do/5AMA2YHP gif : http://me2.do/5xoIOwe8
20160601 : Àå¹Ì(Rose) : http://me2.do/IDcagNz4 gif : http://me2.do/GFEIAcgb
20160530 : »ï°¢ÇüÀÇ ¿À´õ¸® ÅÊŬ II(Orderly Tangle II of Triangles) : http://me2.do/GM7YD2N6 gif : http://me2.do/IMeL5CJp
20160526 : »ï°¢ÇüÀÇ ¿À´õ¸® ÅÊŬ I(Orderly Tangle I of Triangles) : http://me2.do/FOAkgx4n gif : http://me2.do/FqMOBb7r
20160422 : ÇÁ·ºÅ» ÄÚÈå ´«¼ÛÀÌ(Fractal Koch Snowflake) : http://me2.do/xdZTk9pl gif : http://me2.do/G093JZs2
20160413 : ÇÁ·ºÅ» Æä¾Æ³ë °î¼±(Fractal Peano Curve) : http://me2.do/FE6E8hgA gif : http://me2.do/xFkGj1Lk
20160410 : ÇÁ·ºÅ» ÄÚÈå°î¼±(Fractal Koch Curve) : http://me2.do/xMiqXRJI
20160409 : ²ÉÀÙÂ÷·Ê(Petals turn) gif : http://me2.do/51EVLZLL
20160407 : ¿¬¼â¹ýÄ¢(The Chain Rule) : http://me2.do/5RkI654P
20160407 : $\displaystyle\frac{d}{dx}(\sin x)=\cos x$ : http://me2.do/50Hw4dVG
20160406 : ¹ÌºÐ°ø½ÄÇ¥(Table of Differential Formulas) : http://me2.do/GDdSJCMo
20160406 : °íÂ÷¹ÌºÐ(Higher Derivatives) : http://me2.do/xm839kh7
20160406 : $\exists f'(a) \Rightarrow\displaystyle\lim_{x \rightarrow a}{f(x)}=f(a)$ : http://me2.do/5bP9iiaS
20160406 : $\text{ÇÔ¼ö} \ f \text{ÀÇ ¹ÌºÐ(The derivative of } f )$ : http://me2.do/x5jnfQF6
20160404 : $\theta < \tan \theta \ (0<\theta<\frac{\pi}{2})$: http://me2.do/GDdSftF3 gif : http://me2.do/G2qNbfE5
20160331 : Æò±Õ º¯ÈÀ²°ú ¼ø°£ º¯ÈÀ²(The average rate of change and the instantaneous rate of change) : http://me2.do/xQInQi5j
20160331 : $a$¿¡¼ ÇÔ¼ö $f$ÀÇ ¹ÌºÐ(The derivative of a function $f$ at a number $a$) : http://me2.do/GcgfeMWH
20160327 : $\displaystyle \lim_{\theta \rightarrow 0} \frac{\sin \theta}{\theta}=1$ : http://me2.do/xMifDww3
20160320 : ¾ÐÂøÁ¤¸®(The Squeeze Theorem) : http://me2.do/5DiYOGdR
20160320 : $[\forall \epsilon>0 , a+\epsilon >0 ]\Leftrightarrow a\ge 0$ : http://me2.do/xDiZ3FjV
20160316 : $[f(x) \le g(x) (0 < |x-a| < \delta_0) \ , \ \displaystyle \lim_{x \rightarrow a} f(x) =L \ , \ \displaystyle \lim_{x \rightarrow a} g(x) =M] \Rightarrow L\le M$ : http://me2.do/GoJRjDnc
20160315 : ³ª´°¼ÀÀÇ ±ØÇÑÀº ±ØÇÑÀÇ ³ª´°¼ÀÀÌ´Ù.(The limit of a quotient is the quotient of the limits(provided that the limit of the denominator is not 0)) : http://me2.do/IDcR6LT7
20160315 : °öÀÇ ±ØÇÑÀº ±ØÇÑÀÇ °öÀÌ´Ù.(The limit of a product is the product of the limits.) : http://me2.do/GxXzALRv
20160314 : Â÷ÀÇ ±ØÇÑÀº ±ØÇÑÀÇ Â÷ÀÌ´Ù.(The limit of a difference is the difference of the limits.) : http://me2.do/xRtu2azE
20160314 : ÇÔ¼öÀÇ »ó¼ö¹èÀÇ ±ØÇÑÀº ÇÔ¼öÀÇ ±ØÇÑÀÇ »ó¼ö¹èÀÌ´Ù.(The limit of a constant times a function is the constant times the limit of the function.) : http://me2.do/xYlwTs7W
20160314 : ÇÕÀÇ ±ØÇÑÀº ±ØÇÑÀÇ ÇÕÀÌ´Ù.(The limit of a sum is the sum of the limits.): http://me2.do/FYDiAf1u
20160314 : ±ØÇÑÀÇ ¹ýÄ¢µé(Limit Laws) : http://me2.do/Fzfe1ol1
20160314 : ±ØÇÑ(lim_{x rightarrow a} f(x)=l) : http://me2.do/54cptpac
20160309 : Á¢¼±(Tanget line) : http://me2.do/5Ml4uC6s
20160308 : °è»ê±âÀÇ À߸øµÈ °á°ú(the False Values of The Calculator ) : http://me2.do/GzHKg5dj excel : http://me2.do/xy8SlUOf
20160307 : Á±ØÇÑ, ¿ì±ØÇÑ( Definiton of One-Sided Limits) : http://me2.do/GWPBP8Nv
20160307 : ±ØÇÑÀÇ Á¤ÀÇ(Definition of limit) : http://me2.do/Gg6K6ywd
20160306 : pi¿¡ ´ëÇÑ À¯¸®¼ö ±Ù»ç(The rational approximations to pi) : http://me2.do/F1JYCcVB gif : http://me2.do/5MlWmYeZ
20160228 : ¼ø°£¼Óµµ¿Í Æò±Õ¼Óµµ(The instantaneous velocity and average velovity) : http://me2.do/xfOlie5v gif : http://me2.do/GRb2tYj6
20160204 : ÇÔ¼ö f¿¡ ´ëÇÑ È»ìÇ¥ µµÇ¥(Arrow diagram for a function f) : http://me2.do/GoJEQMRG gif : http://me2.do/FZexpiAH
20160203 : ÇÔ¼ö fÀÇ º¥´ÙÀ̾î±×·¥(Venn diagram of a function) : http://me2.do/GKdPdVAU gif : http://me2.do/GnuJu1Lz
20160202 : ÇÔ¼ö fÀÇ ±â°èµµ (Machine diagram for a function f) : http://me2.do/xX4OF1BS gif : http://me2.do/5IKzjPNJ
20160201 : Function : http://me2.do/5IKztVuS
20160131 : ¼ö¿ S_n=1/2 + cdots + 1/2^nÀÇ ±ØÇÑ (The Limit of a Sequence S_n=1/2 + cdots + 1/2^n ) : http://me2.do/GZkBQGZd gif : http://me2.do/5ZrazcyC
20160130 : ¼ö¿ a_n=1/nÀÇ ±ØÇÑ (The Limit of a Sequence a_n=1/n ) : http://me2.do/xaK2PbFG gif : http://me2.do/x70QvW1R
20160129 : Á¢¼±¿¡ Á¢±ÙÇÏ´Â ÇÒ¼±µé(Secant lines approaching the tangent line) : http://me2.do/xlnmiiIY gif : http://me2.do/5wKFU7R2
20160128 : ÄÚ½ÃÀÇ Æò±Õ°ª Á¤¸®(Cauchy's Mean Value Theorem) : http://me2.do/xKeRueLw gif : http://me2.do/G69toI8S
20160127 : »óÇÕ°ú ÇÏÇÕ(Upper Sum and Lower Sum) : http://me2.do/5J7UNXEm gif_1 : http://me2.do/5Mlz08j1 gif_2 : http://me2.do/GKdJXclN gif_3 : http://me2.do/FQZGg9UE
20160126 : Ÿ¿øÀÇ Æ÷¶ô¼±(The evelope of the ellipse) : http://me2.do/xpxAwDcL gif_1 : http://me2.do/FE6pnwN7 gif_2 : http://me2.do/5OeykFfz ggb : http://me2.do/GHIq8mH1
20160125 : ¿øÀÇ ³ÐÀÌ(The Area of The Circle) : http://me2.do/x6OyZ3Ry gif : http://me2.do/GwKMDbRq
20160124 : 3Â÷¿ø °ø°£¿¡¼ µÎ À§Ä¡º¤ÅÍ¿¡ ´ëÇÏ¿© ÇÑ À§Ä¡ º¤ÅÍÀÇ Á¾Á¡ÀÌ ±¸ À§¿¡ ÀÖÀ» ¶§ µÎ À§Ä¡º¤ÅÍÀÇ ³»ÀûÀÇ ¹üÀ§´Â ¹«¾ùÀΰ¡?(What is range of the dot product of two positon vectors in the three-dimensional of which the end point of one is on a sphere?): http://me2.do/xaKRG382 gif : http://me2.do/GGJtmTkg
20160123 : ggb problem : http://me2.do/5rHgyQ92 Æò¸é¿¡¼ µÎ À§Ä¡º¤ÅÍ¿¡ ´ëÇÏ¿© ÇÑ À§Ä¡ º¤ÅÍÀÇ Á¾Á¡ÀÌ ¿ø À§¿¡ ÀÖÀ» ¶§ µÎ À§Ä¡º¤ÅÍÀÇ ³»ÀûÀÇ ¹üÀ§´Â ¹«¾ùÀΰ¡?(What is range of the dot product of two positon vectors of which the end point of one is on a circle?): http://me2.do/x2JMHIQw gif : http://me2.do/52L5rrwu
¡¡