¸¸µç ¼ø¼º°[2014]
[óÀ½] [2018] [2017] [2016] [2015] [2014]
¹ÎÀº±â¼±»ý´ÔÀÇ ¼öÇÐÀÚ·á½Ç ÀÌ¿ë¹æ¹ý : https://goo.gl/bVaSff
¹Ýµå½Ã Ardobe reader ¸¦ ¼³Ä¡ ÈÄ¿¡ ÀڷḦ ÀÌ¿ë¹Ù¶ø´Ï´Ù.
ÀÚ·á´Â Geogebra¿Í TexÀÇ beamer¸¦ ÀÌ¿ëÇÏ¿© ¸¸µç °ÍÀÔ´Ï´Ù.
¼ö¾÷¿¡ »ç¿ëÇϱ⠽±°Ô pdfÈÀÏ·Î ÀçÆíÁýÇÑ ÀÚ·áÀÔ´Ï´Ù.
¶ÇÇÑ, °ÀǸ¦ ¿Ã·Á³õ¾Ò½À´Ï´Ù.
20141208 : µ¥ÀÚ¸£±×ÀÇ Á¤¸® (Desargues' Theorem) : http://me2.do/FWYva7JS
20141124 : °Ô¸£°ï´ÀÀÇ Á¤¸® (Gergonne's Theorem) : http://me2.do/x5Jgc6E0
20141120 : Åç·¹¹ÌÀÇ Á¤¸® (Ptolemy's Theorem) : http://me2.do/xvvEQnkB
20141119 : ü¹ÙÀÇ Á¤¸® (Ceva's Theorem) : http://me2.do/GajO3ePm
20141119 : ¸Þ³Ú¶ó¿ì½ºÀÇ Á¤¸® (Menelaus' Theorem) : http://me2.do/5XdlurhZ
20141016 : Ÿ¿øÀÇ Á¤ÀÇ gif(Definition of Ellipse gif) : http://me2.do/5TRoRLUj
20141016 : Ÿ¿øÀÇ Á¤ÀÇ(Definition of Ellipse) : http://me2.do/GPfYfDP4
20141015 : Æ÷¹°¼±ÀÇ Áؼ± »óÀÇ Á¡¿¡¼ Æ÷¹°¼±¿¡ ±×Àº µÎ °³ÀÇ Á¢¼±Àº ¼öÁ÷ÀÓÀ» º¸¿©¶ó.[±âÇÏÀû Á¢±Ù](Demonstrate that the two tangent lines of a parabola which pass through a point on the directrix are perpendicular to each other.[Geometric Approach]) : http://me2.do/5pnAIxkr
20141013 : Áؼ±ÀÌ y=-p ÀÌ°í ÃÊÁ¡ÀÌ (0,p) ÀÏ ¶§, Æ÷¹°¼±¿¡¼ÀÇ ±â¿ï±â°¡ mÀÎ Á¢¼±ÀÇ ¹æÁ¤½ÄÀ» ±¸ÇÏ¿©¶ó.[±âÇÏÀû Á¢±Ù](When a directrix is y=-p and a focus is (0,p), find the equation for the tangent line having slope m to the parabola .[Geometric Approach]) : http://me2.do/FybCTGbK
20141010 : Áؼ±ÀÌ x=-p ÀÌ°í ÃÊÁ¡ÀÌ (p,0) ÀÏ ¶§, Æ÷¹°¼±¿¡¼ÀÇ ±â¿ï±â°¡ mÀÎ Á¢¼±ÀÇ ¹æÁ¤½ÄÀ» ±¸ÇÏ¿©¶ó.[±âÇÏÀû Á¢±Ù](When a directrix is x=-p and a focus is (0,p), find the equation for the tangent line having slope m to the parabola.[Geometric Approach]) : http://me2.do/F2WzDs0F
20141010 : Áؼ±ÀÌ y=-p ÀÌ°í ÃÊÁ¡ÀÌ (0,p) ÀÏ ¶§, Æ÷¹°¼± »óÀÇ Á¡(x_1,y_1) ¿¡¼ÀÇ Á¢¼±ÀÇ ¹æÁ¤½ÄÀ» ±¸ÇÏ¿©¶ó.[±âÇÏÀû Á¢±Ù](When a directrix is y=-p and a focus is (0,p), find the equation for the tangent line to the parabola at a given point (x_1,y_1).[Geometric Approach]) : http://me2.do/GwGi7Vb5
20141010 : Áؼ±ÀÌ y=-p ÀÌ°í ÃÊÁ¡ÀÌ (0,p) ÀÏ ¶§, Æ÷¹°¼± »óÀÇ Á¡(x_1,y_1) ¿¡¼ÀÇ Á¢¼±ÀÇ ¹æÁ¤½ÄÀ» ±¸ÇÏ¿©¶ó.(When a directrix is y=-p and a focus is (0,p), find the equation for the tangent line to the parabola at a given point (x_1,y_1).) : http://me2.do/5vb5HULP
20141010 : Áؼ±ÀÌ x=-p ÀÌ°í ÃÊÁ¡ÀÌ (p,0) ÀÏ ¶§, Æ÷¹°¼± »óÀÇ Á¡(x_1,y_1) ¿¡¼ÀÇ Á¢¼±ÀÇ ¹æÁ¤½ÄÀ» ±¸ÇÏ¿©¶ó.[±âÇÏÀû Á¢±Ù](When a directrix is x=-p and a focus is (p,0), find the equation for the tangent line to the parabola at a given point (x_1,y_1).[Geometric Approach]) : http://me2.do/GIl9YUkR
20140920 : Áؼ±ÀÌ x=-p ÀÌ°í ÃÊÁ¡ÀÌ (p,0) ÀÏ ¶§, Æ÷¹°¼± »óÀÇ Á¡(x_1,y_1) ¿¡¼ÀÇ Á¢¼±ÀÇ ¹æÁ¤½ÄÀ» ±¸ÇÏ¿©¶ó.(When a directrix is x=-p and a focus is (p,0), find the equation for the tangent line to the parabola at a given point (x_1,y_1).) : http://me2.do/GcUsBfpl
20140919 : Áؼ±ÀÌ y=-p ÀÌ°í ÃÊÁ¡ÀÌ (0,p) ÀÏ ¶§ Æ÷¹°¼±ÀÇ ¹æÁ¤½ÄÀ» ±¸ÇÏ¿©¶ó.(When a directrix is y=-p and a focus is (0,p), find the equation of the parabola.) : http://me2.do/554f8LvL
20140918 : Áؼ±ÀÌ x=-p ÀÌ°í ÃÊÁ¡ÀÌ (p,0) ÀÏ ¶§ Æ÷¹°¼±ÀÇ ¹æÁ¤½ÄÀ» ±¸ÇÏ¿©¶ó.(When a directrix is x=-p and a focus is (p,0), find the equation of the parabola.) : http://me2.do/G0aWgMIU
20140918 : Áؼ±°ú ÃÊÁ¡ÀÌ ÀÖ°í, ÃÊÁ¡À» ½ÃÀÛÁ¡À¸·Î ÇÏ´Â ¹ÝÁ÷¼±ÀÌ ÀÖÀ» ¶§, ±× ¹ÝÁ÷¼±°ú ¸¸³ª´Â Æ÷¹°¼± »óÀÇ Á¡À» ÀÛµµÇ϶ó. gif(With a directrix and a focus when a ray starting from the focus is given, draw a point on the ray passing the parabola. gif) : http://me2.do/FybBqgiw
20140918 : Áؼ±°ú ÃÊÁ¡ÀÌ ÀÖ°í, ÃÊÁ¡À» ½ÃÀÛÁ¡À¸·Î ÇÏ´Â ¹ÝÁ÷¼±ÀÌ ÀÖÀ» ¶§, ±× ¹ÝÁ÷¼±°ú ¸¸³ª´Â Æ÷¹°¼± »óÀÇ Á¡À» ÀÛµµÇ϶ó.(With a directrix and a focus when a ray starting from the focus is given, draw a point on the ray passing the parabola.) : http://me2.do/FCTC9AVh
20140918 : Áؼ±°ú ÃÊÁ¡ÀÌ ÀÖ°í, Áؼ± »óÀÇ ÇÑ Á¡À» Áö³ª´Â ¼öÁ÷¼±ÀÌ ÀÖÀ» ¶§, ±× ¼öÁ÷¼±°ú ¸¸³ª´Â Æ÷¹°¼± »óÀÇ Á¡À» ÀÛµµÇ϶ó. gif(With a directrix and a focus when a perpendicular line passing a point on the directrix is given, draw a point on the perpendicular line passing the parabola. gif) : http://me2.do/GbjRaQX2
20140918 : Áؼ±°ú ÃÊÁ¡ÀÌ ÀÖ°í, Áؼ± »óÀÇ ÇÑ Á¡À» Áö³ª´Â ¼öÁ÷¼±ÀÌ ÀÖÀ» ¶§, ±× ¼öÁ÷¼±°ú ¸¸³ª´Â Æ÷¹°¼± »óÀÇ Á¡À» ÀÛµµÇ϶ó.(With a directrix and a focus when a perpendicular line passing a point on the directrix is given, draw a point on the perpendicular line passing the parabola.) : http://me2.do/FxD8Ulxm
20140918 : Æ÷¹°¼±ÀÇ Á¤ÀÇ gif(Definition of Parabola gif) : http://me2.do/GB9z27Dc
20140915 : ¼±ºÐÀÇ ¼öÁ÷ À̵îºÐ ¼± »óÀÇ Á¡À¸·ÎºÎÅÍ ¼±ºÐÀÇ ¾ç ³¡Á¡±îÁöÀÇ °Å¸®´Â °°´Ù.(Given a line segment, distances from a point on the perpendicular bisector to the each end point of the line segment are same.) : http://me2.do/xlimsZKj
20140912 : Æ÷¹°¼±ÀÇ Á¤ÀÇ(Definition of Parabola) : http://me2.do/51mN2tRR
20140821 : Function Composition : http://me2.do/x73ACzc6
20140819 : Venn Diagram of Function : http://me2.do/FEfGZPUC
20140812 : Function : http://me2.do/x6Xfl5CY
20140806 : Inequality of Arithmetic and Geometric and Harmonic Means for n non-negative real numbers : http://me2.do/x5HFtR1f
20140805 : Cauchy Schwarz inequality in R : http://me2.do/xan6Af4s
20140722 : Arithmetic Mean Geometric Mean Harmonic Mean : http://me2.do/GIlGze54
20140720 : Harmonic mean : http://me2.do/FL6yGhXD
20140717 : Geometric Mean : http://me2.do/xgCuF5it
20140710 : abs(x)+abs(y)<1 : http://me2.do/xgCaBs5h
20140709 : abs(y)=f(x) : http://me2.do/5dtxT1nW
20140709 : y=abs(f(x)) : http://me2.do/xmarar4t
20140709 : y=f(abs(x)) : http://me2.do/5Yt1ZIrp
20140613 : A = B : http://me2.do/52siBr5f
20140612 : A subset B : http://me2.do/5kQ0P6w2
20140610 : a in A b notin A : http://me2.do/GOBaCjW4
20140609 : Union Intersection Relative Complement(Difference) Universal Set Absolute Complement(Complement) : http://me2.do/GfitfQmV
20140609 : Set and Element : http://me2.do/x732plJo
20140604 : 2014 Geogebra¸¦ È°¿ëÇÑ ¼öÇмö¾÷ ¹× ¼ö¾÷ÀÚ·áÁ¦ÀÛ : http://me2.do/52srXuRF
20140525 : Solving Quadratic Inequalities by Graphing gif : http://me2.do/5gwuroLE
20140525 : Solving Quadratic Inequalities by Graphing : http://me2.do/F4vFtone
20140525 : Solving Quadratic Inequalities (ax^2+bx+c gt 0 (a gt 0 b c mathbb R )) in Algebra : http://me2.do/5DuMk78t
20140525 : Solving Quadratic Inequalities (ax^2+bx+c ge 0 (a gt 0 b c mathbb R )) in Algebra : http://me2.do/IM5bzCCU
20140525 : Solving Quadratic Inequalities (ax^2+bx+c lt 0 (a gt 0 b c mathbb R )) in Algebra : http://me2.do/ID2lSpXf
20140525 : Solving Quadratic Inequalities (ax^2+bx+c le 0 (a gt 0 b c mathbb R )) in Algebra : http://me2.do/GeDn8Pqf
20140524 : Euclid's Lemma : http://me2.do/FncUuYEz
20140523 : Vieta¡¯s Formula in Cubic Equations : http://me2.do/5sAaV9Bz
20140520 : f(x)=a_n x^n+a_{n-1}x^{n-1}+cdots+a_1 x+a_0 ( a_n neq 0 a_i in mathbb Z ) : http://me2.do/xnSF5E6X
20140514 : Vieta¡¯s Formula in Quadratic Equations : http://me2.do/FwZJdpea
20140505 : Discriminant of the Quadratic Formula : http://me2.do/GhMT44NX
20140503 : System of Two Linear Equations in Two Variables : http://me2.do/5BOiPl9I
20140501 : Canonical Representation of a Positive Integer : http://me2.do/GZbmldYL
20140422 : Definite Integrals : http://me2.do/GJ0o1UKy
20140419 : Complex Conjugate Root Theorem : http://me2.do/GmK5qMSU
20140416 : z^2=w w in mathbb C : http://me2.do/xvRe95aN
20140413 : Complex Numbers : http://me2.do/GGTXxq2h
20140413 : The Imaginary Unit : http://me2.do/5ZEaU8l5
20140412 : The Complex Conjugate : http://me2.do/xg9SV1k8
20140411 : Á߽ɰ¢ÀÇ Å©±â°¡ Æò°¢º¸´Ù ÀÛÀº ºÎä²Ã¿¡ ³»Á¢ÇÏ´Â Á÷»ç°¢ÇüÀÌ ÀÖÀ» ¶§ Á߽ɿ¡¼ Á÷»ç°¢ÇüÀÇ ÇÑ º¯¿¡ ¼ö¼±ÀÇ ¹ßÀ» ³»¸®¸é ¼ö¼±Àº ºÎä²ÃÀ» À̵îºÐÇÑ´Ù : http://me2.do/GbjeVlcx
20140407 : a equiv b (mod c) : http://me2.do/xKjxDDF3
20140406 : a mid b : http://me2.do/Fdzd5xLk
20140405 : ax=b : http://me2.do/GGTDxbej
20140403 : y=frac{a}{2}(x-abs(x)).gif : http://me2.do/FKXgHpZ1
20140403 : y=frac{a}{2}(x-abs(x)) : http://me2.do/GTLkVR7Y
20140402 : y=frac{a}{2}(x+abs(x)).gif : http://me2.do/xZsYiG6e
20140402 : y=frac{a}{2}(x+abs(x)) : http://me2.do/557Gdgwu
20140401 : ÁÖ±âÇÔ¼ö ±×¸®±â : http://me2.do/GyPxmZYV
20140401 : ÁÖ±âÇÔ¼ö ±×¸®±â.ggb : http://me2.do/FZUm4JmO
20140330 : The Equality of Complex Numbers : http://me2.do/xPkhhO6x
20140328 : The Principal Square Root of Real Numbers : http://me2.do/GSGT753o
20140325 : The Absolute Value of Real Numbers : http://me2.do/GVwzkpwg
20140322 : a=mn,n ge m (a,m,n in mathbb{N}) Rightarrow sqrt{a} ge m : http://me2.do/GhM2CWDn
20140318 : Polynomial Remainder Theorem : http://me2.do/x1dKySlc
20140315 : The Integer Division Algorithm : http://me2.do/FGnNZ7km
20140309 : »ï°¢ÇüÀÇ °¡Àå ±ä º¯ÀÇ ´ë°¢ÀÇ ²ÀÁöÁ¡¿¡¼ ±ä º¯¿¡ ¼ö¼±ÀÇ ¹ßÀ» ³»¸®¸é ¼ö¼±ÀÇ ¹ßÀº ±ä º¯ À§¿¡ ÀÖ´Ù : http://me2.do/GZbOPhWy
20140309 : a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2=-(a+b+c)(-a+b+c)(a-b+c)(a+b-c) : http://me2.do/IFNuoR8R
20140308 : (x+y+z)^3-x^3-y^3-z^3=3(x+y)(y+z)(z+x) : http://me2.do/5Yf6A2jF